Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 11(3): ofae091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449920

RESUMO

Background: Septic arthritis of the spinal facet joints is increasingly recognized in the era of magnetic resonance imaging, but its epidemiology, clinical features, management, and prognosis are ill-defined. Methods: We review 101 previously published cases and report 16 cases occurring at our institutions between 2006 and 2018. Results: Most patients presented with fever (60%) and back or neck pain (86%). Radiation into the hip, buttock, or limb was present in 34%. The lumbosacral vertebral segments were involved in 78% of cases. Most cases (64%) were due to Staphylococcus aureus. Bacteremia was present in 66% and paraspinal muscle abscesses in 54%. While epidural abscesses were present in 56%, neurologic complications were seen in only 9%, likely because most abscesses arose below the conus medullaris. Neurologic complications were more common with cervical or thoracic involvement than lumbosacral (32% vs 2%, P < .0001). Extraspinal infection, such as endocarditis, was identified in only 22% of cases. An overall 98% of patients survived, with only 5% having neurologic sequelae. Conclusions: Septic arthritis of the facet joint is a distinct clinical syndrome typically involving the lumbar spine and is frequently associated with bacteremia, posterior epidural abscesses, and paraspinal pyomyositis. Neurologic outcomes are usually good with medical management alone.

2.
Water Environ Res ; 96(3): e11009, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444297

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are an emerging issue in wastewater treatment. High-temperature thermal processes, incineration being time-tested, offer the opportunity to destroy and change the composition of PFAS. The fate of PFAS has been documented through wastewater sludge incinerators, including a multiple hearth furnace (MHF) and a fluidized bed furnace (FBF). The dewatered wastewater sludge feedstock averaged 247- and 1280-µmol targeted PFAS per sample run in MHF and FBF feed, respectively. Stack emissions (reportable for all targeted PFAS from MHF only) averaged 5% of that value with shorter alkyl chain compounds comprising the majority of the targeted PFAS. Wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust with an average of 0.740- and 0.114-mol F- per sample run, for the MHF and FBF, respectively. Simple alkane PFAS measured at the stack represented 0.5%-4.5% of the total estimated facility greenhouse gas emissions. PRACTITIONER POINTS: The MHF emitted six short chain PFAS from the stack, which were shorter alkyl chain compounds compared with sludge PFAS. The FBF did not consistently emit reportable PFAS from the stack, but contamination complicated the assessment. Five percent of the MHF sludge molar PFAS load was reported in the stack. MHF and FBF wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust. Ultra-short volatile alkane PFAS measured at the stack represented 0.5%-4.5% of the estimated facility greenhouse gas emissions.


Assuntos
Fluorocarbonos , Gases de Efeito Estufa , Esgotos , Águas Residuárias , Alcanos , Incineração , Água
3.
Genes (Basel) ; 14(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136938

RESUMO

In common with other plant species, the garden pea (Pisum sativum) produces the auxin indole-3-acetic acid (IAA) from tryptophan via a single intermediate, indole-3-pyruvic acid (IPyA). IPyA is converted to IAA by PsYUC1, also known as Crispoid (Crd). Here, we extend our understanding of the developmental processes affected by the Crd gene by examining the phenotypic effects of crd gene mutations on leaves, flowers, and roots. We show that in pea, Crd/PsYUC1 is important for the initiation and identity of leaflets and tendrils, stamens, and lateral roots. We also report on aspects of auxin deactivation in pea.


Assuntos
Ácidos Indolacéticos , Ervilhas , Ervilhas/genética , Desenvolvimento Vegetal , Mutação
4.
Open Forum Infect Dis ; 10(1): ofad029, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726544

RESUMO

The geographic range of blastomycosis is thought to include New England, but documentation is sparse. We report 5 cases of infection with Blastomyces dermatitidis that were likely acquired in New England between 2011 and 2021. Our experience suggests that chart coding for the diagnosis of blastomycosis is imprecise and that mandatory reporting might help resolve uncertainties about the prevalence and extent of blastomycosis.

5.
N Engl J Med ; 388(5): 454-459, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724332
6.
Plant Physiol ; 190(4): 2103-2114, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094356

RESUMO

Two hundred years after the birth of Gregor Mendel, it is an appropriate time to reflect on recent developments in the discipline of genetics, particularly advances relating to the prescient friar's model species, the garden pea (Pisum sativum L.). Mendel's study of seven characteristics established the laws of segregation and independent assortment. The genes underlying four of Mendel's loci (A, LE, I, and R) have been characterized at the molecular level for over a decade. However, the three remaining genes, influencing pod color (GP), pod form (V/P), and the position of flowers (FA/FAS), have remained elusive for a variety of reasons, including a lack of detail regarding the loci with which Mendel worked. Here, we discuss potential candidate genes for these characteristics, in light of recent advances in the genetic resources for pea. These advances, including the pea genome sequence and reverse-genetics techniques, have revitalized pea as an excellent model species for physiological-genetic studies. We also discuss the issues that have been raised with Mendel's results, such as the recent controversy regarding the discrete nature of the characters that Mendel chose and the perceived overly-good fit of his segregations to his hypotheses. We also consider the relevance of these controversies to his lasting contribution. Finally, we discuss the use of Mendel's classical results to teach and enthuse future generations of geneticists, not only regarding the core principles of the discipline, but also its history and the role of hypothesis testing.


Assuntos
Flores , /genética , Flores/genética
7.
Water Environ Res ; 94(4): e10715, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35388572

RESUMO

Solids from wastewater treatment undergo processing to reduce mass, minimize pathogens, and condition the products for specific end uses. However, costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) challenge traditional landfill and land application practices. Incineration can overcome these issues but has become complicated due to evolving emissions regulations, and it suffers from poor public perception. These circumstances are driving the re-emergence of pyrolysis and gasification technologies. A survey of suppliers was conducted to document differences with technologies. Both offer advantages over incineration with tailored production of a carbon-rich solid, currently less stringent air emission requirements, and lower flue gas flows requiring treatment. However, incineration more simply combines drying and thermal processing into one reactor. Equipment costs provided favor pyrolysis and gasification at lower capacities but converge with incineration at higher capacities. Long-term operational experience will confirm technology competitiveness and elucidate whether pyrolysis and gasification warrant widespread adoption. PRACTITIONER POINTS: Pyrolysis and gasification systems are gaining traction in the wastewater industry with several full-scale installations operating, in construction, or design Several advantages, but some disadvantages, are considered in comparison with incineration Organic contaminants, including PFAS, will undergo transformation and potentially complete mineralization through each process.

8.
Water Environ Res ; 94(3): e10701, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35298843

RESUMO

Wastewater treatment generates solids requiring subsequent processing. Costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) are challenging widely used landfilling and land application practices. These circumstances are partly driving the re-emergence of pyrolysis and gasification technologies along with beneficial reuse prospects of the char solid residual. Previously, technologies experienced operational challenges leading to revised configurations, such as directly coupling a thermal oxidizer to the reactor to destroy tar forming compounds. This paper provides an overview of pyrolysis and gasification technologies, characteristics of the char product, air emission considerations, and potential fate of PFAS and other pollutants through the systems. Results from a survey of viable suppliers illustrate differences in commercially available options. Additional research is required to validate performance over the long-term operation and confirm contaminant fate, which will help determine whether resurging interest in pyrolysis and gasification warrants widespread adoption. PRACTITIONER POINTS: Pyrolysis and gasification systems are re-emerging in the wastewater industry. Direct coupling of thermal oxidizers and other modifications offered by contemporary systems aim to overcome past failures. Process conditions when coupled with a thermal oxidizer will likely destroy most organic contaminants, including PFAS, but requires additional research. Three full-scale facilities recently operated, several in construction or design that will provide operating experience for widespread technology adoption consideration.

9.
Nat Plants ; 7(12): 1546-1547, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34862484
10.
New Phytol ; 229(3): 1553-1565, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32984971

RESUMO

Plants undergo several developmental transitions during their life cycle. One of these, the differentiation of the young embryo from a meristem-like structure into a highly specialized storage organ, is believed to be controlled by local connections between sugars and hormonal response systems. However, we know little about the regulatory networks underpinning the sugar-hormone interactions in developing seeds. By modulating the trehalose 6-phosphate (T6P) content in growing embryos of garden pea (Pisum sativum), we investigate here the role of this signaling sugar during the seed-filling process. Seeds deficient in T6P are compromised in size and starch production, resembling the wrinkled seeds studied by Gregor Mendel. We show also that T6P exerts these effects by stimulating the biosynthesis of the pivotal plant hormone, auxin. We found that T6P promotes the expression of the auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE RELATED2 (TAR2), and the resulting effect on auxin concentrations is required to mediate the T6P-induced activation of storage processes. Our results suggest that auxin acts downstream of T6P to facilitate seed filling, thereby providing a salient example of how a metabolic signal governs the hormonal control of an integral phase transition in a crop plant.


Assuntos
Fosfatos Açúcares , Trealose , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Fosfatos , Plantas Geneticamente Modificadas , Sementes , Sacarose
11.
Water Environ Res ; 93(6): 826-843, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33190313

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a recalcitrant group of chemicals and can be found throughout the environment. They often collect in wastewater systems with virtually no degradation prior to environmental discharge. Some PFAS partitions to solids captured in wastewater treatment which require further processing. Of all the commonly applied solids treatment technologies, incineration offers the only possibility to completely destroy PFAS. Little is known about the fate of PFAS through incineration, in particular, for the systems employed in water resource recovery facilities (WRRF). This review covers available research on the fate of PFAS through incineration systems with a focus on sewage sludge incinerators. This research indicates that at least some PFAS destruction will occur with incineration approaches used at WRRFs. Furthermore, PFAS in flue gas, ash, or water streams used for incinerator pollution control may be undetectable. Future research involving full-scale fate studies will provide insight on the efficacy of PFAS destruction through incineration and whether other compounds of concern are generated. PRACTITIONER POINTS: Thermal processing is the only commercial approach available to destroy PFAS. Thermal degradation conditions required for destruction of PFAS during incineration processes are discussed. Fate of PFAS through water resource recovery facility incineration technologies remains unclear. Other thermal technologies such as smoldering combustion, pyrolysis, gasification, and hydrothermal liquefaction provide promise but are in developmental phases.


Assuntos
Incineração , Recursos Hídricos , Esgotos , Águas Residuárias
13.
Open Forum Infect Dis ; 7(3): ofaa089, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258206

RESUMO

BACKGROUND: The clinical spectrum of septic arthritis in the era of the opioid crisis is ill-defined. METHODS: This is a retrospective chart review of 1465 cases of culture-positive native joint septic arthritis at Boston teaching hospitals between 1990 and 2018. RESULTS: Between 1990-2008 and 2009-2018, the proportion of septic arthritis cases involving people who inject drugs (PWID) rose from 10.3% to 20% (P < .0000005). Overall, methicillin-sensitive Staphylococcus aureus (MSSA) caused 41.5% of cases, and methicillin-resistant Staphylococcus aureus (MRSA) caused 17.9%. Gram-negative rods caused only 6.2% of cases. Predictors of MRSA septic arthritis included injection drug use (P < .001), bacteremia (P < .001), health care exposure (P < .001), and advancing age (P = .01). Infections with MSSA were more common in PWID (56.3% vs 38.8%; P < .00001), as were infections with MRSA (24% vs 16.8%; P = .01) and Serratia sp. (4% vs 0.4%; P = .002). Septic arthritis in the setting of injection drug use was significantly more likely to involve the sacroiliac, acromioclavicular, and facet joints; 36.8% of patients had initial synovial fluid cell counts of <50 000 cells/mm3. CONCLUSIONS: Injection drug use has become the most common risk factor for septic arthritis in our patient population. Septic arthritis in PWID is more often caused by MRSA, MSSA, and Serratia sp., and is more prone to involve the sacroiliac, acromioclavicular, sternoclavicular, and facet joints. Synovial fluid cell counts of <50 000 cells/mm3 are common in culture-positive septic arthritis.

14.
Front Plant Sci ; 11: 190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265944

RESUMO

Wild radish is a major weed of Australian cereal crops. A rapid establishment, fast growth, and abundant seed production are fundamental to its success as an invasive species. Wild radish has developed resistance to a number of commonly used herbicides increasing the problem. New innovative approaches are needed to control wild radish populations. Here we explore the possibility of pursuing gibberellin (GA) biosynthesis as a novel molecular target for controlling wild radish, and in doing so contribute new insights into GA biology. By characterizing ga 3-oxidase (ga3ox) mutants in Arabidopsis, a close taxonomic relative to wild radish, we showed that even mild GA deficiencies cause considerable reductions in growth and fecundity. This includes an explicit requirement for GA biosynthesis in successful female fertility. Similar defects were reproducible in wild radish via chemical inhibition of GA biosynthesis, confirming GA action as a possible new target for controlling wild radish populations. Two possible targeting approaches are considered; the first would involve developing a species-specific inhibitor that selectively inhibits GA production in wild radish over cereal crops. The second, involves making crop species insensitive to GA repression, allowing the use of existing broad spectrum GA inhibitors to control wild radish populations. Toward the first concept, we cloned and characterized two wild radish GA3OX genes, identifying protein differences that appear sufficient for selective inhibition of dicot over monocot GA3OX activity. We developed a novel yeast-based approach to assay GA3OX activity as part of the molecular characterization, which could be useful for future screening of inhibitory compounds. For the second approach, we demonstrated that a subset of GA associated sln1/Rht-1 overgrowth mutants, recently generated in cereals, are insensitive to GA reductions brought on by the general GA biosynthesis inhibitor, paclobutrazol. The location of these mutations within sln1/Rht-1, offers additional insight into the functional domains of these important GA signaling proteins. Our early assessment suggests that targeting the GA pathway could be a viable inclusion into wild radish management programs that warrants further investigation. In drawing this conclusion, we provided new insights into GA regulated reproductive development and molecular characteristics of GA metabolic and signaling proteins.

15.
Front Plant Sci ; 10: 1154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611890

RESUMO

Protocols have been proposed for rapid generation turnover of temperate legumes under conditions optimized for day-length, temperature, and light spectra. These conditions act to compress time to flowering and seed development across genotypes. In pea, we have previously demonstrated that embryos do not efficiently germinate without exogenous hormones until physiological maturity is reached at 18 days after pollination (DAP). Sugar metabolism and moisture content have been implicated in the modulation of embryo maturity. However, the role of hormones in regulating seed development is poorly described in legumes. To address this gap, we characterized hormonal profiles (IAA, chlorinated auxin [4-Cl-IAA], GA20, GA1, and abscisic acid [ABA]) of developing seeds (10-22 DAP) from diverse pea genotypes grown under intensive conditions optimized for rapid generation turnover and compared them to profiles of equivalent samples from glasshouse conditions. Growing plants under intensive conditions altered the seed hormone content by advancing the auxin, gibberellins (GAs) and ABA profiles by 4 to 8 days, compared with the glasshouse control. Additionally, we observed a synchronization of the auxin profiles across genotypes. Under intensive conditions, auxin peaks were observed at 10 to 12 DAP and GA20 peaks at 10 to 16 DAP, indicative of the end of embryo morphogenesis and initiation of seed desiccation. GA1 was detected only in seeds harvested in the glasshouse. These results were associated with an acceleration of embryo physiological maturity by up to 4 days in the intensive environment. We propose auxin and GA profiles as reliable indicators of seed maturation. The biological relevance of these hormonal fluctuations to the attainment of physiological maturity, in particular the role of ABA and GA, was investigated through the study of precocious in vitro germination of seeds 12 to 22 DAP, with and without exogenous hormones. The extent of sensitivity of developing seeds to exogenous ABA was strongly genotype-dependent. Concentrations between 5 and 10 µM inhibited germination of seeds 18 DAP. Germination of seeds 12 DAP was enhanced 2.5- to 3-fold with the addition of 125 µM GA3. This study provides further insights into the hormonal regulation of seed development and in vitro precocious germination in legumes and contributes to the design of efficient and reproducible biotechnological tools for rapid genetic gain.

16.
New Phytol ; 216(1): 193-204, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28748561

RESUMO

In recent years the biosynthesis of auxin has been clarified with the aid of mutations in auxin biosynthesis genes. However, we know little about the effects of these mutations on the seed-filling stage of seed development. Here we investigate a key auxin biosynthesis mutation of the garden pea, which results in auxin deficiency in developing seeds. We exploit the large seed size of this model species, which facilitates the measurement of compounds in individual seeds. The mutation results in small seeds with reduced starch content and a wrinkled phenotype at the dry stage. The phenotypic effects of the mutation were fully reversed by introduction of the wild-type gene as a transgene, and partially reversed by auxin application. The results indicate that auxin is required for normal seed size and starch accumulation in pea, an important grain legume crop.


Assuntos
Ácidos Indolacéticos/farmacologia , Sementes/anatomia & histologia , Amido/biossíntese , Ácido 2,4-Diclorofenoxiacético/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Mutação/genética , Tamanho do Órgão/efeitos dos fármacos , /embriologia , Fenótipo , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/ultraestrutura , Sacarose/metabolismo , Fatores de Tempo , Zigoto/efeitos dos fármacos , Zigoto/metabolismo
17.
Plant Physiol ; 175(1): 351-360, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28733387

RESUMO

Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms, a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterize mutants at the Crispoid (Crd) locus in pea (Pisum sativum), which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in crd mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find Crispoid to be a member of the YUCCA family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity.


Assuntos
Ácidos Indolacéticos/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Homeostase , Mutação , Oxigenases/genética , Oxigenases/metabolismo , /genética , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Água/fisiologia
18.
Infect Dis Clin North Am ; 31(2): 203-218, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366221

RESUMO

Septic arthritis is a rheumatologic emergency that may lead to disability or death. Prompt evacuation of the joint, either by arthrocentesis at the bedside, open or arthroscopic drainage in the operating room, or imaging-guided drainage in the radiology suite, is mandatory. Methicillin-resistant Staphylococcus aureus (MRSA) has become a major cause of septic arthritis in the United States. MRSA joint infection seems to be associated with worse outcomes. Antibiotic courses of 3 to 4 weeks in duration are usually adequate for uncomplicated bacterial arthritis. Treatment duration should be extended to 6 weeks if there is imaging evidence of accompanying osteomyelitis.


Assuntos
Artrite Infecciosa , Articulações/microbiologia , Osteomielite/microbiologia , Fatores Etários , Antibacterianos/uso terapêutico , Artrite Infecciosa/complicações , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/microbiologia , Artrite Infecciosa/terapia , Drenagem , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Líquido Sinovial/citologia , Estados Unidos/epidemiologia
20.
Plant Signal Behav ; 11(11): e1250993, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27808586

RESUMO

One of the fundamental plant growth substances, indole-3-acetic acid (IAA), belongs to a class of phytohormones known as auxins. The main IAA biosynthesis pathway involves the conversion of tryptophan to indole-3-pyruvic acid, which is in turn converted to IAA. The two enzymes responsible for these conversions, members of the TAA1 and YUCCA gene families, respectively, have recently been implicated in the synthesis of another auxin, phenylacetic acid (PAA). While there is some evidence to support this theory, there are also some concerns. Here we address the question: to what extent does the TAA1/YUCCA system contribute to the biosynthesis of PAA? In addition, we highlight the importance of measuring auxin metabolites and conjugates in addressing such questions.


Assuntos
Ácidos Indolacéticos/metabolismo , Fenilacetatos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...